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1 Introduction

An Extended Kalman Filter(EKF) is used to estimate the state of the standpipe for a
circulating fluidized bed(CFB). The dynamic model of the flow within the standpipe is
based on mass conservation and a modified Richardson-Zaki correlation. The truncated
Ergun equation is used to relate the pressure drop measurements to the amount and velocity
of solids in the standpipe. The state estimation problem for nonlinear systems in the
presence of process and measurement noise has been widely considered in the literatures
and in applications. One of the most applied solutions is the Extended Kalman Filter(EKF),
which consists of a Kalman filter obtained by a step-by-step linearization around the current
estimate of the state vector. This research applies an extended Kalman filter as an estimator
for the state of the standpipe for a circulating fluidized bed.

2 Mathematical Model

The model is based on conservation of mass as expressed by the one-dimensional continuity
equation for both phases. If gas compressibility can be neglected the equations for both
phases have the same form.

∂εp

∂t
+

∂jp

∂z
= 0 ,



where p = g for gas or s for granular solid and ε is volume fraction and j is volumetric flux.
If the two continuity equations are added and use is made of εg + εs = 1 we obtain the
constraint that

j0(t) = jg(z, t) + js(z, t).

Usually j0 is computed at a specified point, the inlet or exit, and is constant throughout
the standpipe. The constraint reduces the model from two partial differential equations to
one partial differential equation and an algebraic equation. When the standpipe is divided
into cells, a discrete form of the controlling dynamic equation is obtained by integrating the
gas phase equation over the ith and replacing the time derivation by a forward difference.
The resulting equation is:
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where εi
k is the void fraction at the center of the ith cell at the time step k and j

i− 1
2

k−1 is
the volumetric gas flux between cell i − 1 and cell i at the previous time step. The time
increment and the length of each cell along the standpipe are ∆t and ∆z, respectively. The
fluxes into and out of a cell are related to the void fraction ε in that cell by the upwind
procedure. The relationship between εg and jg is obtained by writing

jg

εg
− js

εs
= Vr = Vt ζ(ε),

and using an empirical expression that relates Vr to εg.

We define, g(ε), g′(ε) and ζ(ε) that are used in the calculation of the fluxes by

g(ε) = ε (1− ε) ζ(ε)

g′(ε) =
dg(ε)
dε

, and

ζ(ε) =




0 if ε ≤ εpb

(εmf)n−1

εmf−εpb
(ε − εpb) if εpb < ε < εmf

εn−1 if ε ≥ εmf

.

εmf is the void fraction at minimum fluidization, and εpb is the void fraction in a packed
bed. We further define the void fractions at a cell boundary to be the arithmetic mean of
the void fractions in adjacent cells,

ε̄
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2
.



The wave speed λi− 1
2 of the void fraction disturbance at the boundary between cell i−1

and cell i is given by
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2 = j0 + Vtg

′
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2
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)
,

where Vt is the terminal velocity of a single isolated particle. The wave can propagate either
up or down in the standpipe:

j
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2 > 0 ,

j
i− 1

2
k−1 = j0 εi

k−1 + Vt g
(
εi
k−1

)
if λi− 1
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The measurement model that relates the pressure difference between cell i and the
topmost cell of the standpipe at the time-step k is the numerically integrated version of the
truncated Ergun equation. If we let

q(ε) =
(ε − 1)2

ε2
ζ(ε) ,

then we can write the pressure difference pi
k as

pi
k =

1
2
C1Vt

N−1∑
�=i
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{

q
(
ε�
k

)
+ q

(
ε�+1
k

)}
, (2)

where N is the number of cells in the standpipe, C1 is a constant 150µ
dvs

2 , µ is the fluid viscosity,
and dvs is the effective particle diameter.

3 An Extended Kalman Filter

The behavior of the standpipe in a CFB and its pressure measurements constitute a non-
linear discrete-time system represented by two sets of equations:

εk = fk−1 (εk−1) + wk−1 ,

pk = hk (εk) + vk .

The vector f(·) is a non-linear function of the state in equation (1), and the vector h(·)
captures every term on the right side of equation (2). The noise terms, wk and vk are
added to account for errors in the dynamic and measurement models, respectively. They
are uncorrelated, E

{
wk vk

T
}
= 0 and are assumed normally distributed with zero mean,

E {wk} = E {vk} = 0 and with covariance matrices, Q = E
{
wk wk

T
}
, and R = E

{
vk vk

T
}
,



respectively. For this research Q and R are diagonal positive semi-definite matrices tuned
to provide good performance.

We define the a priori and the a posteriori estimate errors as ek(−) = εk − ε̂k(−), and
ek(+) = εk − ε̂k(+), respectively. Then we define the a priori and the a posteriori estimate
error covariance matrices as

Pk(−) = E
{
ek(−) ek(−)

T
}

, and Pk(+) = E
{
ek(+) ek(+)

T
}

, respectively.

Because εk is never known, the EKF algorithm calculates Pk(−) and Pk(+) other ways, as
will be shown.

4 EKF Algorithm

In overview, the Kalman filter takes into account information from both the dynamic model
and the measurement model and performs a running, least-squares, error minimization to
obtain the best estimate of the void fraction distributions. In general, the EKF uses the
dynamic model to predict a set of εk(−) for a given time. It then uses the measurement
model to correct that estimate to εk(+), the EKF estimate. In detail, the EKF algorithm
is:

1. Assign values for the diagonal and positive semi-definite matrices Q and R, and choose
initial conditions for ε̂k(+) and Pk(+).

2. The predicted state vector is determined from the dynamic model, Eq(1).

ε̂k(−) = fk−1 (ε̂k−1(+)) .

3. The Jacobian matrix of the non-linear dynamic model is calculated as

Fk (ε̂k(+)) =
∂fk(ε)

∂ε

∣∣∣∣
ε=ε̂k(+)

.

4. The a priori error covariance matrix is computed as

Pk(−) = Fk−1 (ε̂k−1(+))Pk−1(+)Fk−1 (ε̂k−1(+))T + Q .

5. The Jacobian matrix of the non-linear measurement model is calculated as

Hk (ε̂k(−)) =
∂hk(ε)

∂ε

∣∣∣∣
ε=ε̂k(−)

.



6. The Kalman gain matrix, Kk which minimizes the a posteriori error covariance, is
computed as

Kk = Pk(−)Hk (ε̂k(−))T
{

Hk (ε̂k(−))Pk(−)Hk (ε̂k(−))T + R
}−1

.

7. The estimate of the pressure difference is determined from the measurement model,
Eq.(2),

p̂k = hk (ε̂k(−)) .

8. The corrected estimate of the state vector is determined as

ε̂k(+) = ε̂k(−) + Kk {pk − p̂k} .

This is the EKF estimate of the void fraction profile at time step k.

9. The a posteriori error covariance matrix is computed as

Pk(+) = {IN − KkHk (ε̂k(−))}Pk(−) ,

where IN is an N × N identity matrix.

10. Finally, the time step is incremented and we return to step 2.

5 Apparatus and Operating Condition

The circulating fluidized bed system that we are studying consists of a standpipe, a non-
mechanical valve, a riser, and a gas/solid separator. The standpipe serves as a reservoir for
solids as well as providing for pressure balance around the loop. It is made from clear acrylic
so that the bed height can be observed and recorded. It is 37.2 ft long and 1 ft in diameter.
It has eight pressure taps located at 1, 4, 7, 10, 11.5, 16, and 20.5 ft from the bottom. The
solid used in this experiment is coke breeze of 200µ average diameter with bulk density
54 lb/ft3. It circulates at an average rate of 24× 103 lbs/hr as measured by the turn rate of
a short spiral device located near the bottom of the standpipe. The data from the pressure
taps and the mass circulation rate are sampled at a 1Hz rate by a data acquisition system
that stores the data for off-line processing. Air injected at the base of the standpipe at
265 SCFH serves to drive the solids from the standpipe, through the non-mechanical valve,
and into the base of the riser. This injected air is referred to as move air and is one of the
primary controls of this system. In order to maintain pressure balance around the CFB, the
move air splits with part of it passing through the non-mechanical valve and part flowing



upward through the standpipe. Air injected at a rate of 70× 103 SCFH at the base of the
riser causes the solids entering the riser to be transported rapidly upward. The outflow from
the top of the riser then passes to the gas/solid separator where the air exits the system and
solids returned to the top of the standpipe where they fall onto the top of a dense bed of
varying height. From there solids move downward as a dense bed. For the first 250 seconds
the bed level in the standpipe is held at 11.3 ft. After that solids are fed into the riser which
causes the bed level in the standpipe to rise gradually and obtain approximately 22 ft at
1100 seconds.

6 Standpipe State Estimation

The length of the standpipe is discretized into 25 cells each of length, ∆zi. The 24 cells
from the bottom are 1.5 ft in length, and very top cell, the 25th cell, is 1.2 ft long. The time
increment is chosen to provide stable performance, ∆t = 0.1 . The theoretical value of Vt is
calculated from particle and fluid properties, but in the computer simulations we find that
half of this theoretical Vt, that is 1.92 ft/sec, gives better results. The value of n is calculated
according to the standard Richardson-Zaki procedure and found to be 3.35. The parameters
εmf and εpb are chosen to be 0.4 and 0.45, respectively. Since the simple model used in this
paper does not predict the split of the move air, it is chosen to obtain good performance.
The results shown here assume half of the move air goes up the standpipe. After a trial and
error using computer simulation, we assign error covariance matrices to be Q = 0.0001 I25
and R = 10 I7 . We choose the initial estimated void fraction to be ε̂i

k(+) = 0.7, i = 1 · · · 25
and the initial a posteriori error covariance matrix to be P0(+) = I25. The EKF algorithm
given in section 4 is implemented in MATLAB r© code and run on a 450MHz Pentium r© III
computer, and it approximately takes 2400 seconds for a 1100 second simulation.

Figure 1 shows the initial condition and illustrates that the EKF finds the void fraction
profile within the standpipe in less than 40 seconds. ♦ is initial conditions, + is EKF
estimate at 10 seconds, and • is EKF estimate at 40 seconds. The EKF estimates the bed
height to be about 12 ft, compared with the observed value of 11.3 ft.

Figure 2 compares the estimated pressure profile(•) to the measured pressure profile(×).
From low to high pressures, the first three measured values form a steep straight line
indicating those pressures were measured above the bed level. The remaining four values
are within the bed and form another straight line except for the pressure at 7 ft. We believe
it is anomalously low because of the spiral solids flow measuring device. Both of the actual
and the estimate agree on the bed level at approximately 12 ft.

Figure 3 shows the EKF estimate of the void fraction profile at 1100 seconds. After 250
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Figure 1: Estimated void fraction profiles when time is 0, 10, and 40 seconds.
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Figure 2: Measured(×) and estimated(•) pressure profiles at 40 seconds.
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Figure 3: Void fraction profile at 1100 seconds.

seconds the standpipe begins to fill with solids. The EKF is found to correctly track the
bed height in the standpipe while filling. The profile correctly reflects the observed bed
height of 22 ft.

Figure 4 shows that all of the pressure taps are within the bed at 1100 seconds. After
the initial 40 seconds, the EKF closely estimates the pressure profile in the standpipe. The
biggest discrepancy between measured and estimate pressure is at 1 ft. We believe that this
occurs because the EKF does not consider an obstacle in the bed that impedes the solid
flow.

Figure 5. shows the solids inventory in the standpipe as calculated by
25∑
i=1

(
1− ε̂i

k(+)
)
∆zi

for each time step k. The initial rapid change in the amount of solids is caused by the poor
initial condition, ε̂i

k(+) = 0.7 for all i. The EKF needs approximately 40 seconds to find a
good estimate of the amount of solids. Between 50 and 250 seconds, the estimated amount of
solids is constant because the actual amount of solids in the system is constant as indicated
by the constant bed level. While filling, the EKF responds by increasing its estimate of the
amount of solids after a 40–50 second delay.
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Figure 4: Measured(×) and estimated(•) pressure profiles at 1100 seconds.
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Figure 5: Estimated amount of solids in the standpipe.



7 Conclusion and Future Work

In this paper, the extended Kalman filter is successfully applied to estimate the void fraction
and the pressure profiles in the standpipe for a circulating fluidized bed. We choose the
values of solid circulation rate and move air split. Future work includes treating such things
as the split of move air and solid flux as parameters to be estimated by the EKF, allowing
multiple aeration ports, increasing the speed of the EKF algorithm, implementing it in real
time, extending it to the entire CFB, and using it as a part of an optimal control scheme
for the CFB.
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